ALGEBRA QUALIFYING EXAM { SPRING 2017

Problem 1. Prove that an Artinian ring has nitely many maximal ideals.

Problem 2. Let \mathbb{F} be a nite eld with $j\mathbb{F} = q$. Consider the subgroup

$$G = \begin{array}{ccc} a & b \\ 0 & 1 \end{array} j a 2 \mathbb{F} ; b 2 \mathbb{F} < \mathrm{GL}_2(\mathbb{F}): \end{array}$$

Show that for any prime p dividing q = 1, the number of Sylow p-subgroups of G is q.

Problem 3. Let *R* be a UFD and *a*; *b* be coprime elements in *R*. For all *i* 0, compute

Problem 4. Let *F* be a eld, and *D* be an integral domain containing *F*. Suppose *D* is nite dimensional as a vector space over *F*. For each $x \ge D$, de ne the *F*-linear transformation $T_x: D \le D$ by $T_x(y) = xy$. \therefore r(a) intrafining that F